
“Docker” for (open)data

John Krauss
The Governance Lab at NYU

Brooklyn, New York, USA
john@thegovlab.org

Arnaud Sahuguet
The Governance Lab at NYU

Brooklyn, New York, USA
arnaud.sahuguet@gmail.com

ABSTRACT
Open data has received a lot of attention. Some speak of
open data as revolutionary, as much as open source was for
software. The reality is somewhat different.

Someone – a civic hacker, a data journalist or a researcher
in academia – willing to make sense of the data usually has
to go through the following steps: (a) find the datasets they
need, (b) download the datasets, (c) realize they are missing
a few, and download those too, (d) create a schema and
load the datasets into a database, (e) join the datasets into
one or more views that permit analysisand finally (f) run
queries against the dataset. This is not only time consuming
(usually half a day of work) but also extremely frustrating.
The process must be repeated whenever the datasets get
updated.

In this paper, we present a novel approach for packaging open
data we call Docker for Data, inspired by the eponymous
cloud container solution. With Docker for Data, we package
datasets into coherent and self-contained units that can be
deployed with a few clicks and used within minutes instead
of hours. We also present a concrete application in the
context of open data investigation centered around the issue
of housing costs in the context of New York City.

INTRODUCTION
Open data has received a lot of attention. Some speak of
open data as revolutionary, as much as open source was
for software. The Web in general, Android and most of
the technology sector would probably not be as successful
without opensource technologies.

“Open data is data that can be freely used, reused and
redistributed by anyone – subject only, at most, to the
requirement to attribute and sharealike” [2]. According
to McKinsey [9], this can translate into $3 to $5 trillion in
economic impact. Open data also creates large opportunities
for innovation [17] and social impact [8].

But in practice, the reality is somewhat different as described
by some leaders of the opendata movement, e.g. [6, 15].
Here is a somewhat contrived view of a the current situation.
Someone – a civic hacker, a data journalist or a researcher
in academia – willing to make sense of the data usually has

Bloomberg Data for Good Exchange Conference.
28-Sep-2015, New York City, NY, USA.

to go through the following steps: (a) find the datasets they
need, (b) realize that they are missing a few, (c) download
the datasets, (d) create a schema and load the datasets into
a database, (e) join the dataset into one or more views that
make sense and finally (f) run queries against the dataset.
This is not only time consuming (usually half a day of work)
but also extremely frustrating. And the process has to be
repeated whenever the datasets get updated.

In this paper, we present a novel approach to packaging
opendata datasets called Docker for Data – inspired by the
eponymous [3] cloud container solution – where we package
datasets into coherent and self-contained units that can be
deployed with a few clicks and used within minutes. The
rest of this paper is organized as follows. We start with a
motivating example of opendata in the context of real estate
speculation in New York City and the diffulties one faces
when trying to make sense of the data. We then describe
the architecture of Docker for Data and show how it can
be applied for our example. Before we conclude, we present
some related and future work in this space.

MOTIVATION
In the current state, if you are interested in exploring or
answering questions using opendata, you have a few options.

First, you can rely on existing opendata portals like Socrata
[14] or CKAN [1] which are the go-to solutions for most
cities. But such portals are really dataset-centric and offer
very limited query capabilities, one dataset at a time. So, if
your exploration require combining multiple datasets, you
are out of luck.

Another option is to leverage cloud service providers like
Amazon or Google. Either the datasets have been already
uploaded or you need to upload them. Then you can leverage
their respective “big-query” solutions. This comes with some
limitations in terms of what you can do. It also implies that
whatever proprietary data you want to combine or “secret
query” you want to run will be uploaded to someone else’s
cloud.

The last option is the DIY solution, as described in the
introduction, which is both time consuming and frustrating.

The inspiration for this work was an interest in the housing
market in New York City. Affordable housing has received a
lot of attention in cities like New York City [4], San Francisco

https://creativecommons.org/licenses/by/4.0/

[16], etc., as the price of both buying a building and renting an
apartment have risen drastically in just a few years. People
in the community, advocates, and politicians all want to
understand why the city is becoming so expensive, what
trends can be discovered, and what they can learn from such
trends to try to keep their communities in place.

Remarkably, New York City makes publicly available its
entire register of deeds and mortgages, called ACRIS [10], as
open data in a machine-readable format. Despite this, the
data has seen little use in the community. As a simple data
exploration starting point, putting points on a map showing
where property values were increasing rapidly, or where a
certain bank was lending, would require:

1. Identifying which tables you would need from the open
data portal to get the transactions (one table), the
names of buyers, sellers, and banks (another table), and
the lot identifiers for the properties sold or mortgages
(another table).

2. Downloading these tables, which is 5GB of CSVs from
the data portal. This could take several hours if the
downloads don’t fail. You may have to start over from
scratch if one does.

3. Find the geographic tables, which are linked to the
open data portal but live elsewhere as shapefiles. You
would need some background knowledge of how to join
lot identifiers to geographic info in order to know this
table was the one you need.

4. Download the shapefile and convert it into a database
format for the join. You’ll also need to do this five
times, as each borough is in a separate table.

5. Load the CSVs into a database for the join. They’re too
big to work with in a spreadsheet application. There’s
no officially documented schema, so you’ll need to figure
it out yourself or search around on the web for one. The
load itself will take at least twenty minutes on standard
hardware, unless you have installed more complicated
software like pgloader.

6. Add the appropriate indices so the join is not very slow.
Write a view or derivative table that combines the four
so you can query what you want to look for faster.

The data is open, but the process of using it is still so difficult
as to discourage use. Even after a civic-minded coder goes
through the above process, it’s unclear how they can share
their transformations with others. If you are simply a data
enthusiast (with limited hacking skills), the barrier of entry
is simply too high.

ARCHITECTURE & IMPLEMENTATION
Docker [3] “allows you to package an application with all of
its dependencies into a standardized unit for software develop-
ment”. Borrowing from the Docker play-book (and DevOps
more generally), we package datasets into self-contained data
bundles that be deployed quickly and easily.

Let’s start with a little terminology. We have some data

sources, usually city or agency data portals running software
like Socrata or CKAN. Each data source contains one or
more datasets, usually CSV files. Docker for data defines
recipes that map datasets into data dumps.

For Docker for data, we are using Postgres as the database.
A recipe defines a relational schema for a given dataset
and describes the translation from a CSV file or shapefile
into a Posgres data dump. For each dataset, there is a
corresponding recipe. Using existing metadata from the
dataset, the translation can be done automatically. Other
recipes can be defined manually, to combine datasets together,
either as relational views or brand new tables.

The GovLab maintains a build server, whose processes can
be viewed at http://build.dockerfordata.com, which reads
the recipes and uploads the SQL output to S3. The build
server is also packaged as a Docker container and could easily
be run by a third party.

Our docker client (deployed by you, the user) makes it easy
to look for recipes, download the corresponding data dump
locally and load the data into the database.

The architecture of the Docker for Data is described in Figure
1.

Figure 1: Our architecture

REVISITING OUR HOUSING EXAMPLE
In this section, we revisit our motivating example
and show how we are doing it in the context of
Docker for Data. The source code is available from
http://github.com/talos/docker4data.

The ACRIS deed and mortgage data is published by the city
of New York on its open data portal. The build server is

able to automatically generate recipes from the portal. This
is one of the three automatically generated recipes:

source = //data/socrata/data.cityofnewyork.us/acris_real_property_master/data.
{

"data": "http://www.opendatacache.com/data.cityofnewyork.us/api/views/bnx9-e6tj/rows.csv",
"description": "Document Details for Real Property Related Documents Recorded in ACRIS",
"maintainer": {

"@id": "https://github.com/talos/docker4data"
},
"metadata": {

"attribution": "Department of Finance (DOF)",
"category": "City Government",
"description": "Document Details for Real Property Related Documents Recorded in ACRIS",
"socrata": {

"@id": "http://www.opendatacache.com/data.cityofnewyork.us/api/views/bnx9-e6tj.json"
}

},
"name": "ACRIS - Real Property Master",
"status": "needs review",
"table": "acris_real_property_master"

}
-- automatically generated

The other two recipes are very similar and can be found here
and here.

ACRIS does not include geographical data, so it has to be
combined with the city’s tax lot map. This is not hosted on
the open data portal, but this user-contributed recipe adds
it to Docker for Data:

source = //data/contrib/us/ny/nyc/pluto/data.json
{

"data": "http://www.nyc.gov/html/dcp/download/bytes/nyc_pluto_14v1.zip",
"table": "pluto"

}

source = //data/contrib/us/ny/nyc/pluto/before.sh
#!/bin/bash

unzip data

ls *.csv | \
tail -n 1 | \
xargs head -n 1 | \
sed -E 's/ +/ /g' \
> data.concatenated

ls *.csv | \
xargs tail -q -n +2 | \
sed 's/[^[:print:]]//g' | \
sed -E 's/ +/ /g' \
>> data.concatenated

mv data.concatenated data

With all the data sources available on Docker for Data, a final
bundle can be defined that combines them into a usable table
showing deed transfers in NYC from 1966 to the present.

source = //data/contrib/us/ny/nyc/deeds/data.json
{

"requirements": {
"socrata/data.cityofnewyork.us/acris_real_property_master": "latest",
"socrata/data.cityofnewyork.us/acris_real_property_legals": "latest",
"socrata/data.cityofnewyork.us/acris_real_property_parties": "latest",
"socrata/data.cityofnewyork.us/acris_document_control_codes": "latest",
"contrib/us/ny/nyc/pluto": "latest"

},
"description": "All real property sales, with location, for New York City from 1966 \
to the present, derived from ACRIS.",
"maintainer": {

"@id": "https://github.com/talos/docker4data"
},
"metadata": {

"category": "City Government"
},
"table": "deeds"

}

and

source = //data/contrib/us/ny/nyc/deeds/after.sql

CREATE TABLE deeds_master
AS
SELECT DISTINCT (

CASE substr(document_id, 0, 3)
WHEN '20' THEN document_id
WHEN 'FT' THEN '100' || substr(document_id, 4)
WHEN 'BK' THEN '000' || substr(document_id, 4)
ELSE document_ID END)::BIGINT as document_id,

m.good_through_date, m.document_date,
m.document_amt, m.recorded_datetime, m.modified_date,
dcc.doc__type_description, dcc.doc__type as doc_type

FROM "socrata/data.cityofnewyork.us".acris_real_property_master m,
"socrata/data.cityofnewyork.us".acris_document_control_codes dcc

WHERE dcc.class_code_description = 'DEEDS AND OTHER CONVEYANCES' AND
dcc.doc__type = m.doc_type

;

DELETE FROM deeds_master USING deeds_master alias
WHERE deeds_master.document_id = alias.document_id AND

deeds_master.good_through_date < alias.good_through_date;

CREATE UNIQUE INDEX deeds_master_docid ON deeds_master (document_id);

CREATE TABLE deeds_parties
AS
SELECT DISTINCT m.document_id, p.good_through_date,

CASE p.party_type WHEN '1' THEN dcc.party1_type
WHEN '2' THEN dcc.party2_type
WHEN '3' THEN dcc.party3_type

ELSE p.party_type END AS party_type,
p.name, p.addr1, p.addr2, p.country, p.city, p.state, p.zip

FROM "socrata/data.cityofnewyork.us".acris_real_property_parties p,
deeds_master m,
"socrata/data.cityofnewyork.us".acris_document_control_codes dcc

WHERE (CASE substr(p.document_id, 0, 3)
WHEN '20' THEN p.document_id
WHEN 'FT' THEN '100' || substr(p.document_id, 4)
WHEN 'BK' THEN '000' || substr(p.document_id, 4)
ELSE p.document_id END)::BIGINT = m.document_id AND

m.good_through_date = p.good_through_date AND
SUBSTR(p.document_id, 4) ~ '^[0-9]+$' AND
dcc.doc__type = m.doc_type;

CREATE INDEX deeds_parties_docid ON deeds_parties (document_id);

CREATE TABLE deeds_legals
AS
SELECT DISTINCT m.document_id, m.good_through_date,

(borough * 1000000000) + (block * 10000) + lot as bbl,
l.easement, l.partial_lot, l.air_rights, l.subterranean_rights,
l.property_type, l.addr_unit

FROM "socrata/data.cityofnewyork.us".acris_real_property_legals l,
deeds_master m WHERE (CASE substr(l.document_id, 0, 3)

WHEN '20' THEN l.document_id
WHEN 'FT' THEN '100' || substr(l.document_id, 4)
WHEN 'BK' THEN '000' || substr(l.document_id, 4)
ELSE l.document_id END)::BIGINT = m.document_id AND

m.good_through_date = l.good_through_date;
CREATE INDEX deeds_legals_docid ON deeds_legals (document_id);

CREATE TABLE deeds AS
SELECT m.*, l.easement, l.partial_lot, l.air_rights, l.subterranean_rights,

l.property_type, l.addr_unit, party_type,
p.name, p.addr1, p.addr2, p.country, p.city, p.state, p.zip, pl.bbl, pl.cd,
pl.ct2010, pl.cb2010, pl.council, pl.zipcode, pl.address, pl.unitsres,
pl.unitstotal, pl.yearbuilt, pl.condono, pl.geom

FROM deeds_legals l, deeds_master m, deeds_parties p, "contrib/us/ny/nyc".pluto pl
WHERE l.document_id = m.document_id

AND m.document_id = p.document_id
AND l.bbl = pl.bbl;

The command to install Docker for Data is:

curl -s http://git.io/vYsiV | bash
source ~/.bash_profile

The command to download the dataset and load it into the
local container is:

d4d install nyc/deeds

Installing the deeds table will take about five minutes on a
high-speed connection, with the resulting table having about
10 million rows.

To run a query, simply type the following command and you
are inside a Postgres environment, with all the tables loaded
for you and ready to be queried.

d4d psql

For example, for a list of the top 100 addresses most often
used when buying or selling properties, one would only need

https://github.com/talos/docker4data/blob/master/data/socrata/data.cityofnewyork.us/acris_real_property_legals/data.json
https://github.com/talos/docker4data/tree/master/data/socrata/data.cityofnewyork.us/acris_real_property_parties

this query:

SELECT
COUNT(DISTINCT document_id) num_transactions,
COUNT(DISTINCT geom) num_properties,
COUNT(DISTINCT name) num_names,
MIN(document_date) first_purchase,
MAX(document_date) last_purchase,
addr1 address

FROM deeds
GROUP BY addr1
ORDER BY COUNT(DISTINCT geom) DESC
LIMIT 100;

Docker for Data is already being used by data activists
in New York. The Real Estate Investment Cooperative
(REIC) has used the real estate data from Docker for Data
to visualize “flips” in the city, or properties that have sold
at 50%+ markups in less than two years.

Figure 2: Map visualization using Docker for Data,
at REIC

The interactive map can be browsed at http://bit.ly/1TiDTxB1.

In the hands of REIC, open data from Docker for Data can
be used to argue that an increase of 1% in the real property
transfer tax could provide a sustainable stream of millions of
dollars for affordable and cooperative housing in areas most
affected by speculative real estate investment.

RELATED AND FUTURE WORK
Related work
Socrata [14] and CKAN [1] are the two main opendata portal
software. As mentioned before, they are dataset centric and
offer very limited query capabilities. They focus more on data
publishing. Downloading from a data portal is usually slow as
cities and agency don’t like to invest too much on bandwidth.
Hosted datasets, e.g. Amazon, Google, provide prepackaged
solutions that do not always offer enough flexibilities. Open
civic data is very location-centric and such solutions are
1https://docker4data.cartodb.com/viz/34453774-28da-
11e5-8e42-0e0c41326911/public_map

often weak in terms of GIS features. In both cases, the end
user must rely on somebody else hosted solution. Uploading
proprietary data or logic is problematic.

Docker for Data is not the first attempt at packaging data
in an end-user friendly way. The city of Philadelphia was
experimenting with Sqlite [19] bundles on its opendata portal
[7]. The PC-AXIS file format [18] is an attempt at making
datasets optimized for OLAP applications with rolling-up
and drilling-down queries.

Future work
With minimal work, we could increase the number of auto-
matically collected datasets. We only automatically generate
recipes for datasets posted on Socrata data portals. It should
be possible to include CKAN portals into the automatically
generated mix.

While it’s possible to add your own recipes to Docker for
Data, the tooling could use improvement. Developing a
parallel tool to the client “d4d” tool called “b4d” to make it
easy to write and contribute new recipes would be essential
to allowing people to contribute their work. The toolchain
could take advantage of interactive tools like iPython to save
a workflow as a recipe.

The client is still very simple, and not clever enough to
eliminate unneeded artifacts, requirements, and temporary
tables. This means that data can end up being duplicated
on S3.

Since Docker for Data is packaged as a container, it would
be possible to add additional modules, also packaged as
containers, that supply visualization output or database
administration outside of the command line. Recipes could
contain pre-packaged templates and queries that can be
activated with the addition of the necessary module.

Datasets are not currently versioned, and when updates
happen the assumption must be to throw away the old data
and replace it with the new. There could be efficiencies with
projects like dat or within S3 itself to version and stream
only changed sections of data.

Search and discovery are currently limited. A full-text search
with ranking by relevance could be implemented on top of
existing metadata.

Using the large collection of pre-collected data and extensive
schema available, it should be possible to provide suggestions
for possible joins between disparate datasets.

CONCLUSION
As we advocated in a related paper [12], opendata is really
data “of the people, by the people, for the people”. The
current effort to make lots of data open is great, but this
is just tackling the first step, publishing. Make this data
easy to download and use is really the next step. This is
the problem we are trying to solve with Docker for Data, by
taking some inspiration from the Docker container technology
and applying it to open datasets.

This work is still at an early stage but it has been received by

http://nycreic.com/

great interestes at hackathons and the Real Estate Investment
Cooperative (REIC) is using it to visualize anomalies in price
markups.

With the increasing appetite for citizen science [5, 11, 13],
we think that Docker for Data (and any similar efforts) could
be a worthy tool, making access to open data only a few
clicks away.

We welcome your feedback at http://www.dockerfordata.com.
The project is open source. Contributions and forks are
welcome at http://github.com/talos/docker4data.

References
[1] Dietrich, D. and Pollock, R. 2009. CKAN: Apt-get for the
debian of data. 26th chaos communication congress, berlin,
germany, 27–30 december 2009 (2009), 36.

[2] Dietrich, D. et al. 2009. Open data handbook.
http://opendatahandbook. org.

[3] Docker Docker: Build, ship, run an open platform for dis-
tributed applications for developers and sysadmins. Docker.
https://www.docker.com/.

[4] Furman Center for Real Estate and Urban Policy Af-
fordable housing. http://furmancenter.org/research/area/
affordable-housing.

[5] Haklay, M. 2012. Francois grey’s 7 myths of citizen science.
Muki haklay’s personal blog. https://povesham.wordpress.
com/2012/06/13/francois-greys-7-myths-of-citizen-science/.

[6] Headd, M. 2015. I hate open data portals. Civic in-
novations: The future is open. http://civic.io/2015/04/01/
i-hate-open-data-portals/.

[7] Headd, M. 2013. Sqlite DBs as part of data re-
leases. Twitter. https://twitter.com/mheadd/status/
408395756744491008.

[8] Howard, A. 2014. More than economics: The social
impact of open data. Tech Republic. (31~jul 2014).

[9] Manyika, J. 2013. Open data: Unlocking innovation and
performance with liquid information. McKinsey.

[10] New York City Department of Finance Automated city
register information system (ACRIS). http://a836-acris.nyc.
gov/CP/.

[11] Noveck, B.S. 2015. Smart citizens, smarter state: The
technologies of expertise and the future of governing. Harvard
University Press.

[12] Sahuguet, A. et al. 2014. Open civic data: Of the people,
by the people, for the people. Data Engineering Bulletin.
(Dec. 2014).

[13] Silvertown, J. 2009. A new dawn for citizen science.
Trends Ecol. Evol. 24, 9 (Sep. 2009), 467–471.

[14] Socrata Socrata open data solutions for data trans-

parency. Socrata. http://www.socrata.com/.

[15] Wellington, B. Why open data is still too closed - my
TEDxNewYork talk. http://iquantny.tumblr.com/post/
108236949969/why-open-data-is-still-too-closed-my-tedxnewyork.

[16] Wiener, S. 2015. More affordable housing — not a
housing moratorium — is what we need in san francisco —
medium. Medium. https://medium.com/@Scott_Wiener/
more-affordable-housing-not-a-housing-moratorium-is-what-we-need-in-san-francisco-15df3ce5b7cd.

[17] Zuiderwijk, A. et al. 2014. Special issue on innovation
through open data: Guest editors’ introduction. Journal of
theoretical and applied electronic commerce research. 9, 2
(2014), i–xiii.

[18] 2013. PC-Axis file format. Statistiska centralbyrån.
http://www.scb.se/pc-axis_file-format/.

[19] SQLite. https://www.sqlite.org/.

http://opendatahandbook. org
https://www.docker.com/
http://furmancenter.org/research/area/affordable-housing
http://furmancenter.org/research/area/affordable-housing
https://povesham.wordpress.com/2012/06/13/francois-greys-7-myths-of-citizen-science/
https://povesham.wordpress.com/2012/06/13/francois-greys-7-myths-of-citizen-science/
http://civic.io/2015/04/01/i-hate-open-data-portals/
http://civic.io/2015/04/01/i-hate-open-data-portals/
https://twitter.com/mheadd/status/408395756744491008
https://twitter.com/mheadd/status/408395756744491008
http://a836-acris.nyc.gov/CP/
http://a836-acris.nyc.gov/CP/
http://www.socrata.com/
http://iquantny.tumblr.com/post/108236949969/why-open-data-is-still-too-closed-my-tedxnewyork
http://iquantny.tumblr.com/post/108236949969/why-open-data-is-still-too-closed-my-tedxnewyork
https://medium.com/@Scott_Wiener/more-affordable-housing-not-a-housing-moratorium-is-what-we-need-in-san-francisco-15df3ce5b7cd
https://medium.com/@Scott_Wiener/more-affordable-housing-not-a-housing-moratorium-is-what-we-need-in-san-francisco-15df3ce5b7cd
http://www.scb.se/pc-axis_file-format/
https://www.sqlite.org/

	Introduction
	Motivation
	Architecture & Implementation
	Revisiting our housing example
	Related and Future Work
	Related work
	Future work

	Conclusion
	References

